740 research outputs found

    Supermassive Black Hole Formation at High Redshifts via Direct Collapse: Physical Processes in the Early Stage

    Get PDF
    We use numerical simulations to explore whether direct collapse can lead to the formation of SMBH seeds at high-z. We follow the evolution of gas within DM halos of 2 x 10^8 Mo and 1 kpc. We adopt cosmological density profiles and j-distributions. Our goal is to understand how the collapsing flow overcomes the centrifugal barrier and whether it is subject to fragmentation. We find that the collapse leads either to a central runaway or to off-center fragmentation. A disk-like configuration is formed inside the centrifugal barrier. For more cuspy DM distribution, the gas collapses more and experiences a bar-like perturbation and a central runaway. We have followed this inflow down to ~10^{-4} pc. The flow remains isothermal and the specific angular momentum is efficiently transferred by gravitational torques in a cascade of nested bars. This cascade supports a self-similar, disk-like collapse. In the collapsing phase, virial supersonic turbulence develops and fragmentation is damped. For larger initial DM cores the timescales become longer. In models with more organized initial rotation, a torus forms and appears to be supported by turbulent motions. The evolution depends on the competition between two timescales, corresponding to the onset of the central runaway and off-center fragmentation. For less organized rotation, the torus is greatly weakened, the central accretion timescale is shortened, and off-center fragmentation is suppressed --- triggering the central runaway even in previously `stable' models. The resulting SMBH masses lie in the range 2 x 10^4 Mo - 2 x 10^6 Mo, much higher than for Population III remnants. We argue that the above upper limit appears to be more realistic mass. Corollaries of this model include a possible correlation between SMBH and DM halo masses, and similarity between the SMBH and halo mass functions, at time of formation.Comment: 20 pages, 15 figures, 3 tables. Accepted for publication in the Astrophysical Journa

    Supermassive Black Hole Seed Formation at High Redshifts: Long-Term Evolution of the Direct Collapse

    Get PDF
    We use cosmological adaptive mesh refinement (AMR) code Enzo zoom-in simulations to study the long term evolution of the collapsing gas within dark matter (DM) halos at high redshifts. This direct collapse process is a leading candidate for rapid formation of supermassive black hole (SMBH) seeds at high z. To circumvent the Courant condition at small radii, we have used the sink particle method, and focus on the evolution on scales ~0.01-10 pc. The collapse proceeds in two stages, with the secondary runaway happening within the central 10 pc, and with no detected fragmentation. The sink particles form when the collapsing gas requires additional refinement of the grid size at the highest refinement level. Their mass never exceeds ~10^3 Mo, with the sole exception of the central seed which grows dramatically to ~ 2 x 10^6 Mo in ~2 Myr, confirming the feasibility of this path to the SMBH. The time variability of angular momentum axis in the accreted gas results in the formation of two misaligned disks --- a small inner disk, and a more massive, outer disk which is inclined by ~45^o to the inner disk. The self-gravity of these disks is heavily diluted --- both disks lie within the Roche limit of the central seed. While the inner disk is geometrically thin and weakly asymmetric, the outer disk flares due to turbulent motions as a result of the massive inflow along a pair of penetrating filaments. The geometry of inflow via filaments determines the dominant and secondary Fourier modes in this disk --- these modes have a non-self-gravitational origin. We do not confirm that m=1 is a principal mode that drives the inflow in the presence of a central massive object. While the positions of the disks depend on the scale chosen to break the self-similar collapse, the overall configuration appears to be generic, and is expected to form when the central seed becomes sufficiently massive.Comment: 14 pages, 11 figures, MNRAS, in press, typos correcte

    Creation and characterization of vector vortex modes for classical and quantum communication

    Full text link
    Vector vortex beams are structured states of light that are non-separable in their polarisation and spatial mode, they are eigenmodes of free-space and many fibre systems, and have the capacity to be used as a modal basis for both classical and quantum communication. Here we outline recent progress in our understanding of these modes, from their creation to their characterization and detection. We then use these tools to study the propagation behaviour of such modes in free-space and optical fibre and show that modal cross-talk results in a decay of vector states into separable scalar modes, with a concomitant loss of information. We present a comparison between probabilistic and deterministic detection schemes showing that the former, while ubiquitous, negates the very benefit of increased dimensionality in quantum communication while reducing signal in classical communication links. This work provides a useful introduction to the field as well as presenting new findings and perspectives to advance it further

    Direct Collapse to Supermassive Black Hole Seeds with Radiative Transfer: Isolated Halos

    Get PDF
    Direct collapse within dark matter (DM) halos is a promising path to form supermassive black hole (SMBH) seeds at high redshifts. The outer part of this collapse remains optically thin, and has been studied intensively using numerical simulations. However, the innermost region of the collapse is expected to become optically thick and requires us to follow the radiation field in order to understand its subsequent evolution. So far, the adiabatic approximation has been used exclusively for this purpose. We apply radiative transfer in the flux-limited diffusion (FLD) approximation to solve the evolution of coupled gas and radiation, for isolated halos. For direct collapse within isolated DM halos, we find that (1) the photosphere forms at ~10^{-6} pc and rapidly expands outward. (2) A central core forms, with a mass of ~1 Mo, supported by thermal gas pressure gradients and rotation. (3) Growing thermal gas and radiation pressure gradients dissolve it. (4) This process is associated with a strong anisotropic outflow, and another core forms nearby and grows rapidly. (5) Typical radiation luminosity emerging from the photosphere encompassing these cores is ~5 x 10^{37}-5 x 10^{38} erg/s, of order the Eddington luminosity. (6) Two variability timescales are associated with this process: a long one, which is related to the accretion flow within the central ~10^{-4}-10^{-3} pc, and ~0.1 yr, which is related to radiation diffusion. (7) Adiabatic models have been run for comparison and their evolution differs profoundly from that of the FLD models, by forming a central geometrically-thick disk. Overall, an adiabatic equation of state is not a good approximation to the advanced stage of direct collapse, mainly because the radiation in the FLD is capable of escaping due to anisotropy in the optical depth and associated gradients.Comment: 19 pages, 17 figures, MNRAS, in press; correcting typo

    Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos

    Get PDF
    We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ~10 Mo and a highly variable luminosity of 10^{38}-10^{39} erg/s, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ~10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10^{-3} pc, which is ~100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.Comment: 19 pages, 16 figures, MNRAS, accepted for publicatio

    Prospectus, August 4, 2010

    Get PDF
    COLLEGE FOR KIDS LENDS A LEARNING HAND; The so-called gap year between high school and college is just what some students need; Chuck Shepherd’s News of the Weird; Prospectus Pick: Inception; Growing number people growing their own groceries; Digital alarmists are wrong; Plugging a Web tax loophole; A Parkland student’s farewell; Climate change could affect migration to the U.S.; State Fair rides: Thrills, chills and chaos theory made real; Blogging tips for those who love to share their love of food; The past week in sports; Dorm do\u27s and don\u27tshttps://spark.parkland.edu/prospectus_2010/1018/thumbnail.jp

    Supermassive Black Hole Formation at High Redshifts via Direct Collapse in a Cosmological Context

    Get PDF
    We study the early stage of the formation of seed supermassive black holes via direct collapse in dark matter (DM) haloes, in the cosmological context. We perform high-resolution zoom-in simulations of such collapse at high z. Using the adaptive mesh refinement code enzo, we resolve the formation and growth of a DM halo, until its virial temperature reaches ∼104 K, atomic cooling turns on, and collapse ensues. We demonstrate that direct collapse proceeds in two stages, although they are not well separated. The first stage is triggered by the onset of atomic cooling, and leads to rapidly increasing accretion rate with radius, from Ṁ~0.1M⊙yr−1 at the halo virial radius to few M⊙ yr−1, around the scale radius Rs ∼ 30 pc of the NFW DM density profile. The second stage of the collapse commences when the gas density takes precedence over the DM density. This is associated with the gas decoupling from the DM gravitational potential. The ensuing collapse approximates that of an isothermal sphere with Ṁ(r) ~ const. We confirm that the gas loses its angular momentum through non-axisymmetric perturbations and gravitational torques, to overcome the centrifugal barrier. During the course of the collapse, this angular momentum transfer process happens on nearly all spatial scales, and the angular momentum vector of the gas varies with position and time. Collapsing gas also exhibits supersonic turbulent motions which suppress gas fragmentation, and are characterized by density PDF consisting of a lognormal part and a high-density power-law tail
    • …
    corecore